
Encryption at Rest in
Google Cloud Platform
 Google Cloud Platform Encryption Whitepaper

W
9
3
F
0
V
2
6
H
K
B
7
P
N
V

W
9
3
F
0
V
2
6
H
K
B
7
P
N
V

P
6
N
G
8
L
8
3
F
O
2
U
S
3
F

6
7
J
E
L
W
4
9
2
4
U
6
K
D
2

3
8
S
D
8
4
R
V
K
Z
C
T
C
P
3

3
8
S
D
8
4
R
V
K
N
C
T
C
P
3

3
8
S
D
8
4
R
V
K
4
N
C
T
C
P

B
H
D
8
4
3
B
C
A
1
Q
W
9
3
F

0
5
7
E
N
C
R
Y
P
T
I
O
N
8
0

0
J
C
5
7
B
G
X
6
R
L
E
0
4
K

0
J
C
5
7
B
G
X
8
1
6
R
L
E
0

2
U
S
0
V
L
6
H
1
V
B
7
P
N
V

2
U
Y
Y
Y
Y
S
0
V
2
6
H
1
Y
B
7

2
U
Y
Y
Y
Y
S
0
V
2
6
H
1
Y
B
7

2
U
S
0
V
2
6
H
1
Y
B
7
P
N
V

2
U
S
0
V
ff
2
6
T
1
Y
B
7
P
N
V

P
6
N
G
5
O
8
3
F
K
O
3
F
6
K

J
9
2
U
6
U
L
W
6
3
7
4
8
J
T

3
8
S
D
8
D
R
V
K
D
C
3
Y
2
E

3
8
S
D
8
4
R
V
K
I
C
3
Y
2
E

B
H
3
B
C
A
Q
9
F
O
2
7
X
4
M

0
J
C
G
4
S
5
7
6
9
L
E
9
4
R

Table of Contents
CIO-level summary 1
Introduction 2
 What is encryption?
 Why encryption helps secure customer data
 What we consider customer data

Google’s default encryption 3
 Encryption of data at rest
 Layers of encryption
 Encryption at the storage system layer
 Encryption at the storage device layer
 Encryption of backups
 Are there cases where data is not encrypted at rest?
 Key management
 Data encryption keys, key encryption keys, and Google’s Key Management Service
 Encryption key hierarchy and root of trust
 Global availability and replication
 Google’s common cryptographic library
 Granularity of encryption in each Google Cloud Platform product

Additional encryption options for Cloud customers 12
Research and innovation in cryptography 13
Further references 14
 Google Cloud Platform security
 Google Cloud Platform compliance
 Google Apps for Work security

Table of Contents

This is the second of two whitepapers on how Google uses encryption to protect
your data. We also released a Google Apps for Work encryption whitepaper. You
may still find it useful to read both documents to learn about the use of encryption
at Google.

In this whitepaper, you will find more detail on Google’s key hierarchy and root of
trust, as well as information on the granularity of encryption in specific GCP
services for data at rest (this document does not cover encryption in transit).
For all Google products, we strive to keep customer data highly protected, and to
be as transparent as possible about how we secure it.

The content contained herein is correct as of August 2016, and represents the
status quo as of the time it was written. Google Cloud Platform’s security policies
and systems may change going forward, as we continually improve protection for
our customers.

http://services.google.com/fh/files/helpcenter/google_encryptionwp2016.pdf

CIO-level summary
• Google uses several layers of encryption to protect customer data at rest in Google
 Cloud Platform products.

• Google Cloud Platform encrypts customer content stored at rest, without any action
 required from the customer, using one or more encryption mechanisms. There are
 some minor exceptions, noted further in this document.

• Data for storage is split into chunks, and each chunk is encrypted with a unique data
 encryption key. These data encryption keys are stored with the data, encrypted with
 ("wrapped" by) key encryption keys that are exclusively stored and used inside
 Google’s central Key Management Service. Google’s Key Management Service is
 redundant and globally distributed.

• Data stored in Google Cloud Platform is encrypted at the storage level using either
 AES256 or AES128.

• Google uses a common cryptographic library, Keyczar, to implement encryption
 consistently across almost all Google Cloud Platform products. Because this
 common library is widely accessible, only a small team of cryptographers needs to
 properly implement and maintain this tightly controlled and reviewed code.

1

Introduction
For many individuals and companies, security is a deciding factor in choosing a
public cloud vendor. At Google, security is of the utmost importance. We take
security and privacy seriously, and we work tirelessly to protect your data —
whether it is traveling over the Internet, moving between our data centers, or
stored on our servers.

Central to our comprehensive security strategy is encryption in transit and at
rest, which ensures the data can be accessed only by the authorized roles and
services with audited access to the encryption keys. This paper describes
Google’s approach to encryption at rest for the Google Cloud Platform, and how
Google uses it to keep your information more secure.

This document is targeted at CISOs and security operations teams currently
using or considering using Google Cloud Platform. With the exception of the
introduction, this document assumes a basic understanding of encryption and
cryptographic primitives.

What is encryption?
Encryption is a process that takes legible data as input (often called plaintext),
and transforms it into an output (often called ciphertext) that reveals little or no
information about the plaintext. The encryption algorithm used is public, such as
the Advanced Encryption Standard (AES), but execution depends on a key, which
is kept secret. To decrypt the ciphertext back to its original form, you need to
employ the key. At Google, the use of encryption to keep data confidential is
usually combined with integrity protection; someone with access to the
ciphertext can neither understand it nor make a modification without knowledge
of the key. For more information on cryptography, a good resource is an
Introduction to Modern Cryptography.

In this whitepaper, we focus on encryption at rest. By encryption at rest, we
mean encryption used to protect data that is stored on a disk (including
solid-state drives) or backup media.

Why encryption helps secure customer data
Encryption is one piece of a broader security strategy. Encryption adds a layer of
defense in depth for protecting data — encryption ensures that if the data
accidentally falls into an attacker’s hands, they cannot access the data without
also having access to the encryption keys. Even if an attacker obtains the
storage devices containing your data, they won’t be able to understand or
decrypt it.

Encryption at rest reduces the surface of attack by effectively "cutting out" the
lower layers of the hardware and software stack. Even if these lower layers are
compromised (for example, through physical access to devices), the data on
those devices is not compromised if adequate encryption is deployed.
Encryption also acts as a "chokepoint" — centrally managed encryption keys
create a single place where access to data is enforced and can be audited.

Encryption is a
process that takes
legible data as input,
called plaintext, and
transforms it into an
output, called
ciphertext, that reveals
little or no information
about the plaintext.

2

http://www.cs.umd.edu/~jkatz/imc.html

Encryption provides an important mechanism in how Google ensures the privacy
of customer data — it allows systems to manipulate data, e.g., for backup, and
engineers to support our infrastructure, without providing access to content..

What we consider customer data
As defined in the Google Cloud Platform terms of service, customer data refers
to content provided to Google by a Google Cloud Platform customer (or at their
direction), directly or indirectly, via Google Cloud Platform services used by
that customer’s account. Customer data includes customer content and
customer metadata.

Customer content is data that Google Cloud Platform customers generate
themselves or provide to Google, like data stored in Google Cloud Storage, disk
snapshots used by Google Compute Engine, and Cloud IAM policies. The
encryption at rest of customer content is the focus of this whitepaper.

Customer metadata makes up the rest of customer data, and refers to all data
that cannot be classified as customer content. This could include
auto-generated project numbers, timestamps, and IP addresses, as well as the
byte size of an object in Google Cloud Storage, or the machine type in Google
Compute Engine. Metadata is protected to a degree that is reasonable for
ongoing performance and operations.

Encryption of data at rest
Layers of encryption
Google uses several layers of encryption to protect data. Using multiple layers of
encryption adds redundant data protection and allows us to select the optimal
approach based on application requirements.

Google’s default encryption

Customer data refers
to content provided to
Google by a Google
Cloud Platform
customer or at their
direction, directly or
indirectly, via Cloud
services used by that
customer’s account.

3

Figure 1: Several layers of
encryption are used to protect data
stored in Google Cloud Platform.
Either distributed file system
encryption or database and file
storage encryption is in place for
almost all files; and storage device
encryption is in place for almost
all files.

Application Google Cloud Platform services

Block storage

Storage devices: protected by
AES256 or AES128 encryption

Database and file storage: protected
by AES256 or AES128 encryption

Distributed file system: data chunks in
storage systems protected by AES256
encryption with integrity

Platform

Infrastructure

Hardware

Primary focus
of this document

https://cloud.google.com/terms/

Encryption at the storage system layer
To understand how specifically Google Cloud Storage encryption works, it’s
important to understand how Google stores customer data. Data is broken into
subfile chunks for storage; each chunk can be up to several GB in size. Each
chunk is encrypted at the storage level with an individual encryption key: two
chunks will not have the same encryption key, even if they are part of the same
Google Cloud Storage object, owned by the same customer, or stored on the
same machine1. If a chunk of data is updated, it is encrypted with a new key,
rather than by reusing the existing key. This partition of data, each using a
different key, means the "blast radius" of a potential data encryption key
compromise is limited to only that data chunk.

Google encrypts data prior to it being written to disk. Encryption is inherent in
all of Google’s storage systems — rather than added on afterward.

Each data chunk has a unique identifier. Access control lists (ACLs) ensure that
each chunk can be decrypted only by Google services operating under
authorized roles, which are granted access at that point in time. This prevents
access to the data without authorization, bolstering both data security
and privacy.

Each chunk is distributed across Google’s storage systems, and is replicated in
encrypted form for backup and disaster recovery. A malicious individual who
wanted to access customer data would need to know and be able to access (1)
all storage chunks corresponding to the data they want, and (2) the encryption
keys corresponding to the chunks.

Google uses the Advanced Encryption Standard (AES) algorithm to encrypt data
at rest. AES is widely used because (1) both AES256 and AES128 are
recommended by the National Institute of Standards and Technology (NIST) for
long-term storage use (as of November 2015), and (2) AES is often included as
part of customer compliance requirements.

Data stored across Google Cloud Storage is encrypted at the storage level using
AES, in Galois/Counter Mode (GCM) in almost all cases. This is implemented in
the BoringSSL library that Google maintains. This library was forked from

Each data chunk is
encrypted at the
storage level with an
individual encryption
key — two chunks will
not have the same
encryption key, even if
they are part of the
same Google Cloud
Storage object, owned
by the same customer,
or stored on the
same machine.

Figure 2: Data at
Google is broken up
into encrypted
chunks for storage.

4

Data is uploaded
to Google

Data is chunked and each chunk
is encrypted with its own key

Chunks are distributed across Google’s
storage infrastructure

1 Data chunks in Cloud Datastore, App Engine, and Cloud Pub/Sub may contain two customers’ data. See the section on granularity of data encryption by service.

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
https://boringssl.googlesource.com/boringssl/

OpenSSL for internal use, after many flaws were exposed in OpenSSL. In select
cases, AES is used in Cipher Block Chaining (CBC) mode with a hashed message
authentication code (HMAC) for authentication; and for some replicated files,
AES is used in Counter (CTR) mode with HMAC. (Further details on algorithms
are provided later in this document.) In other Google Cloud Platform products,
AES is used in a variety of modes.

Encryption at the storage device layer
In addition to the storage system level encryption described above, in most
cases data is also encrypted at the storage device level, with at least AES128 for
hard disks (HDD) and AES256 for new solid state drives (SSD), using a separate
device-level key (which is different than the key used to encrypt the data at the
storage level). As older devices are replaced, solely AES256 will be used for
device-level encryption.

Encryption of backups
Google’s backup system ensures that data remains encrypted throughout the
backup process. This approach avoids unnecessarily exposing plaintext data.

In addition, the backup system further encrypts each backup file independently
with its own data encryption key (DEK), derived from a key stored in Google’s Key
Management Service (KMS) plus a randomly generated per-file seed at backup
time. Another DEK is used for all metadata in backups, which is also stored in
Google’s KMS. (Further information on key management is in a later section.)

Are there cases where data is not encrypted at rest?
Google Cloud Platform encrypts customer content stored at rest, without any
action from the customer, using one or more encryption mechanisms, with the
following exceptions.

 • Serial console logs from virtual machines in Google Compute Engine; this is
 currently being remediated

 • Core dumps written to local drives, when a process fails unexpectedly; this is
 currently being remediated

 • Debugging logs written to local disk; this is currently being remediated

 • Temporary files used by storage systems; this is currently being remediated

 • Some logs that may include customer content as well as customer metadata;
 this is planned for remediation

This data is still protected extensively by the rest of Google’s security
infrastructure, and in almost all cases still protected by storage-level encryption.

Google Cloud Platform
encrypts customer
content stored at rest,
without any action from
the customer, using one
or more encryption
mechanisms, except for
some minor exceptions.

5

https://www.openssl.org/news/vulnerabilities.html

Key management

Data encryption keys, key encryption keys, and Google’s
Key Management Service
The key used to encrypt the data in a chunk is called a data encryption key (DEK).
Because of the high volume of keys at Google, and the need for low latency and
high availability, these keys are stored near the data that they encrypt. The DEKs
are encrypted with (or “wrapped” by) a key encryption key (KEK). One or more
KEKs exist for each Google Cloud Platform service. These KEKs are stored
centrally in Google’s Key Management Service (KMS), a repository built
specifically for storing keys. Having a smaller number of KEKs than DEKs and
using a central key management service makes storing and encrypting data at
Google scale manageable, and allows us to track and control data access from a
central point.

For each Google Cloud Platform customer, any non-shared resources2 are split
into data chunks and encrypted with keys separate from keys used for other
customers3. These DEKs are even separate from those that protect other pieces
of the same data owned by that same customer.

DEKs are generated by the storage system using Google’s common
cryptographic library. They are then sent to KMS to wrap with that storage
system’s KEK, and the wrapped DEKs are passed back to the storage system to
be kept with the data chunks. When a storage system needs to retrieve
encrypted data, it retrieves the wrapped DEK and passes it to KMS. KMS then
verifies that this service is authorized to use the KEK, and if so, unwraps and
returns the plaintext DEK to the service. The service then uses the DEK to
decrypt the data chunk into plaintext and verify its integrity.

Most KEKs for encrypting data chunks are generated within KMS, and the rest
are generated inside the storage services. For consistency, all KEKs are
generated using Google’s common cryptographic library, using a random
number generator (RNG) built by Google. This RNG is based on NIST 800-90A
and generates an AES256 KEK4. This RNG is seeded from the Linux kernel’s
RNG, which in turn is seeded from multiple independent entropy sources. This
includes entropic events from the data center environment, such as fine-grained
measurements of disk seeks and inter-packet arrival times, and Intel’s RDRAND
instruction where it is available (on Ivy Bridge and newer CPUs).

Data stored in Google Cloud Platform is encrypted with DEKs using AES256 or
AES128, as described above; and any new data encrypted in persistent disks in
Google Compute Engine is encrypted using AES256. DEKs are wrapped with
KEKs using AES256 or AES128, depending on the Google Cloud Platform
service. We are currently working on upgrading all KEKs for Cloud services to
AES256.

The key used to encrypt
the data in a chunk is
called a data encryption
key (DEK). The DEKs
are encrypted with a
key encryption key
(KEK). KEKs are stored
centrally in Google’s Key
Management Service
(KMS), a repository
built specifically for
this purpose.

2 An example of a shared resource (where this segregation does not apply) would be a shared base image in Google Compute Engine — naturally, multiple customers refer to a
single copy, which is encrypted by a single DEK.
3 With the exception of data stored in Cloud Datastore, App Engine, and Cloud Pub/Sub, where two customers’ data may be encrypted with the same DEK. See the section on
granularity of data encryption by service.
4 Note that in the past, this was AES128, and some of these keys remain active for decrypting data. 6

https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide
https://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide

Google’s KMS manages KEKs, and was built solely for this purpose. It was
designed with security in mind. KEKs are not exportable from Google’s KMS by
design; all encryption and decryption with these keys must be done within KMS.
This helps prevent leaks and misuse, and enables KMS to emit an audit trail
when keys are used.

KMS can automatically rotate KEKs at regular time intervals, using Google’s
common cryptographic library to generate new keys. Though we often refer to
just a single key, we really mean that data is protected using a key set: one key
active for encryption and a set of historical keys for decryption, the number of
which is determined by the key rotation schedule. The actual rotation schedule
for a KEK varies by service, but the standard rotation period is 90 days. Google
Cloud Storage specifically rotates its KEKs every 90 days, and can store up to 20
versions, requiring re-encryption of data at least once every 5 years (though in
practice, data re-encryption is much more frequent). KMS-held keys are backed
up for disaster recovery purposes, and they are indefinitely recoverable.

The use of KEKs is managed by access control lists (ACLs) in KMS for each key,
with a per-key policy. Only authorized Google services and users are allowed
access to a key. The use of each key is tracked at the level of the individual
operation that requires that key — so every time an individual uses a key, it is
authenticated and logged. All human data accesses are auditable as part of
Google’s overall security and privacy policies.

When a Google Cloud Platform service accesses an encrypted chunk of data,
here’s what happens:
 1. The service makes a call to the storage system for the data it needs.
 2. The storage system identifies the chunks in which that data is stored (the
 chunk IDs) and where they are stored.
 3. For each chunk, the storage system pulls the wrapped DEK stored with that
 chunk (in some cases, this is done by the service), and sends it to KMS
 for unwrapping.
 4. The storage system verifies that the identified job is allowed to access that
 data chunk based on a job identifier, and using the chunk ID; and KMS
 verifies that the storage system is authorized both to use the KEK
 associated with the service, and to unwrap that specific DEK.
 5. KMS does one of the following:
 • Passes the unwrapped DEK back to the storage system, which decrypts the
 data chunk and passes it to the service. Or, in some rare cases,
 • Passes the unwrapped DEK to the service; the storage system passes the
 encrypted data chunk to the service, which decrypts the data chunk and uses it.

This process is different in dedicated storage devices, such as local SSDs, where
the device manages and protects the device-level DEK.

Figure 3: To decrypt a data
chunk, the storage service calls
Google’s Key Management
Service (KMS) to retrieve the
unwrapped data encryption key
(DEK) for that data chunk.

7

KEKs are not exportable
from Google’s KMS by
design — all encryption
and decryption with
these keys must be
done within KMS. This
helps prevent leaks
and misuse.

Returned
unwrapped DEK

Request for
unwrapping DEK

Data chunk encrypted
with DEK and stored
with wrapped DEK

KMS storing
unexportable KEK

Wrapped
DEK

KEK

Encryption key hierarchy and root of trust
Google’s KMS is protected by a root key called the KMS master key, which wraps
all the KEKs in KMS. This KMS master key is AES2565, and is itself stored in
another key management service, called the Root KMS. Root KMS stores a much
smaller number of keys—approximately a dozen. For additional security, Root
KMS is not run on general production machines, but instead is run only on
dedicated machines in each Google data center.

Root KMS in turn has its own root key, called the root KMS master key, which is
also AES2566 and is stored in a peer-to-peer infrastructure, the root KMS master
key distributor, which replicates these keys globally. The root KMS master key
distributor only holds the keys in RAM on the same dedicated machines as Root
KMS, and uses logging to verify proper use. One instance of the root KMS
master key distributor runs for every instance of Root KMS. (The root KMS
master key distributor is still being phased in, to replace a system that operated
in a similar manner but was not peer to peer.)

When a new instance of the root KMS master key distributor is started, it is
configured with a list of host names already running distributor instances.
Distributor instances can then obtain the root KMS master key from other
running instances. Other than the disaster-recovery mechanisms described
below, the root KMS master key exists only in RAM on a limited number of
specially secured machines.

To address the scenario where all instances of the root KMS master key
distributor restart simultaneously, the root KMS master key is also backed up on
secure hardware devices stored in physical safes in highly secured areas in two
physically separated, global Google locations. This backup would be needed only
if all distributor instances were to go down at once; for example, in a global
restart. Fewer than 20 Google employees are able to access these safes.

5 Note that in the past, this was AES128, and some of these keys remain active for decrypting data.
6 Note that in the past, this was AES128, and some of these keys remain active for decrypting data. 8

Google’s root of trust,
the root KMS master
key, is kept in RAM and
is also secured in
physical safes in limited
Google locations in case
of a global restart.

To summarize:
 • Data is chunked and encrypted with DEKs
 • DEKs are encrypted with KEKs
 • KEKs are stored in KMS
 • KMS is run on multiple machines in data centers globally
 • KMS keys are wrapped with the KMS master key, which is stored in
 Root KMS
 • Root KMS is much smaller than KMS and runs only on dedicated machines
 in each data center
 • Root KMS keys are wrapped with the root KMS master key, which is
 stored in the root KMS master key distributor
 • The root KMS master key distributor is a peer-to-peer infrastructure running
 concurrently in RAM globally on dedicated machines; each gets its key
 material from other running instances
 • If all instances of the distributor were to go down (total shutdown), a
 master key is stored in (different) secure hardware in (physical) safes in
 limited Google locations.
 • The root KMS master key distributor is currently being phased in, to
 replace a system that operated in a similar manner but was not peer
 to peer.

9

Figure 4: The encryption key
hierarchy protects a chunk of
data with a DEK, wrapped with
a KEK in KMS, which is in turn
protected by Root KMS and
the root KMS master key
distributor.

Storage
- Data (encrypted with DEK)
- DEK, almost always AES256
 (wrapped with KEK)

KMS
- KEK, either AES256 or AES128
 (wrapped with KMS master key)

Root KMS
- KMS master key, AES256
 (wrapped with Root KMS master key)

Root KMS master key distributor
- Root KMS master key, AES256

Physical safes
- Root KMS master key, AES256

Global availability and replication
High availability and low latency, global access to keys, are critical at every level;
these characteristics are needed for key management services to be used
across Google.

For this reason, KMS is highly scalable, and it is replicated thousands of times
in Google’s data centers globally. It is run on regular machines in Google’s
production fleet, and instances of KMS run globally to support Google Cloud
Platform operations. As a result, the latency of any single key operation is
very low.

Root KMS is run on several machines dedicated to security operations, in each
data center. The root KMS master key distributor is run on these same
machines, one-to-one with Root KMS. The root KMS master key distributor
provides a distribution mechanism via a gossiping protocol — at a fixed time
interval, each instance of the distributor picks a random other instance to
compare its keys with, and reconciles any differences in key versions. With this
model, there is no central node that all of Google’s infrastructure depends on;
this allows Google to maintain and protect key material with high availability.

Google’s common cryptographic library
Google’s common cryptographic library is Keyczar7, which implements
cryptographic algorithms using BoringSSL8. Keyczar is available to all Google
developers. Because this common library is widely accessible, only a small team
of cryptographers needs to properly implement this tightly controlled and
reviewed code — it's not necessary for every team at Google to "roll their own"
cryptography. A special Google security team is responsible for maintaining this
common cryptographic library for all products.

The Keyczar encryption library supports a wide variety of encryption key types
and modes, and these are reviewed regularly to ensure they are current with the
latest attacks.

At the time of this document’s publication, Google uses the following encryption
algorithms for encryption at rest for DEKs and KEKs. These are subject to
change as we continue to improve our capabilities and security.

Google uses a widely
accessible common
cryptographic library
that is tightly
managed, controlled
and reviewed by a
small team of
cryptographers — so
that it is not necessary
for every team at
Google to "roll their
own" cryptography.

7 An older version of Keyczar has been open-sourced, but the open-source version has not been updated recently and does not reflect internal developments.
8 OpenSSL is also in use, in some places in Google Cloud Storage.
9 Other cryptographic protocols exist in the library and were historically supported, but this list covers the primary uses in Google Cloud Platform. 10

Symmetric encryption • AES-GCM (256 bits) • AES-CBC and AES-CTR (128 and 256 bits)
• AES-EAX (128 and 256 bits)

Symmetric signatures
(where used with AES-CBC
and AES-CTR above for
authentication)

• HMAC-SHA256 • HMAC-SHA512
• HMAC-SHA1

Preferred protocols Other supported protocols9Cryptographic primitive

http://dl.acm.org/citation.cfm?doid=41840.41841
https://boringssl.googlesource.com/boringssl/
https://github.com/google/keyczar

Granularity of encryption in each Google Cloud
Platform product
Each Google Cloud Platform service splits data at a different level of granularity for encryption.

10 Refers to granularity of encryption for customer content. This does not include customer metadata, such as resource names. In some services, all metadata is encrypted with
 a single DEK.
11 Not unique to a single customer.
12 Includes application code and application settings. Data used in App Engine is stored in Cloud Datastore, Cloud SQL or Cloud Storage depending on customer configurations.
13 Not unique to a single customer.
14 Cloud Pub/Sub rotates the DEK used to encrypt messages every hour, or sooner if 1,000,000 messages are encrypted. Not unique to a single customer. 11

Storage

Compute

Big Data

Cloud Storage Per data chunk (typically 256KB-8MB)

Cloud SQL • Second generation: Per instance, as in Google Compute Engine
 (each instance could contain multiple databases)
• First generation: Per instance

Cloud Database Per data chunk11

Cloud Bigtable Per data chunk (several per table)

App Engine12 Per data chunk13

Container Registry Stored in Google Cloud Storage, per data chunk

Container Engine Several per disk, for persistent disks

BigQuery Several per dataset

Cloud Dataproc Stored in Google Cloud Storage, per data chunk

Cloud Dataflow Stored in Google Cloud Storage, per data chunk

Cloud Pub/Sub Per one hour, for up to 1,000,000 messages14

Cloud Datalab Stored in Cloud Bigtable, per notebook file

Compute Engine • Several per disk
• Per snapshot group, with individual snapshot ranges derived
 from the snapshot group master key
• Per image

Google Cloud Platform service Granularity of customer data encryption10

(size of data encrypted with a single DEK)

Additional encryption options
for Cloud customers
In addition to providing encryption by default in Google Cloud Platform, we are
working to offer customers additional encryption and key management options
for greater control.

We want to enable Google Cloud Platform customers to:
 • Remain the ultimate custodian of their data, and be able to control access to
 and use of that data at the finest level of granularity, to ensure both data
 security and privacy
 • Manage encryption for their cloud-hosted data in the same way they
 currently do on-premises — or, ideally, better
 • Have a provable and auditable root of trust over their resources
 • Be able to further separate and segregate their data, beyond the use of ACLs

Customers can use existing encryption keys that they manage with the Google
Cloud Platform, using the Customer supplied encryption keys feature. This
feature is available for Google Cloud Storage and for Google Compute Engine.

We are currently working to introduce new encryption options. Details will be
provided as they become available.

We are working to offer
Google Cloud Platform
customers additional
encryption and key
management options.

12

https://cloud.google.com/storage/docs/encryption#customer-supplied
https://cloud.google.com/compute/docs/disks/customer-supplied-encryption

Research and innovation in
cryptography
To keep pace with the evolution of encryption, Google has a team of world-class
security engineers tasked with following, developing, and improving encryption
technology. Our engineers take part in standardization processes and in
maintaining widely used encryption software. We regularly publish our research
in the field of encryption so that everyone in the industry — including the general
public — can benefit from our knowledge. For example, in 2014 we revealed a
significant vulnerability in SSL 3.0 encryption (known as POODLE), and in 2015
we identified a high-risk vulnerability in OpenSSL.

Google plans to remain the industry leader in encryption for cloud services. In
terms of developing, implementing, and researching newer cryptographic
techniques, we have teams working on:

 • Partially homomorphic cryptography, which allows some operations to be
 performed on data while it is encrypted, so the cloud never sees the data in
 plaintext, even in memory. One place this technology is being used is as part
 of our experimental encrypted BigQuery client, which is openly available.

 • Format- and order- preserving cryptography, which allows some comparison
 and ranking operations to be performed on data while it is encrypted.

 • Post-quantum cryptography, which allows us to replace existing crypto
 primitives that are vulnerable to efficient quantum attacks with post-quantum
 candidates that are believed to be more robust against such attacks. The
 primary focus here is in researching and prototyping lattice-based public-key
 cryptography, including NIST recommendations on post-quantum algorithms.
 Lattice-based crypto is currently thought to be one of the most likely
 encryption techniques to be used in a post-quantum world, although we are
 still in early days in terms of best algorithms, concrete parameters, and
 cryptanalysis for applying lattice-based crypto. Although symmetric key
 encryption and MACs are weakened by known quantum algorithms, they
 can still be upgraded to similar bits of security in a post-quantum world by
 doubling key sizes.

Google has a team of
world-class security
engineers tasked with
following, developing,
and improving
encryption technology.

13

https://www.google.com/about/appsecurity/research/
https://security.googleblog.com/2014/10/this-poodle-bites-exploiting-ssl-30.html
https://openssl.org/news/secadv/20150709.txt
https://github.com/google/encrypted-bigquery-client
https://pqcrypto.org/www.springer.com/cda/content/document/cda_downloaddocument/9783540887010-c1.pdf
https://pqcrypto.org/www.springer.com/cda/content/document/cda_downloaddocument/9783540887010-c1.pdf

Further references
Google Cloud Platform security
For general information on Google Cloud Platform security, see the Security
section of the Google Cloud Platform website.

Google Cloud Platform compliance
For information on Google Cloud Platform compliance and compliance
certifications, see the Compliance section of the Google Cloud Platform website,
which includes Google’s public SOC3 audit report.

Google Apps for Work security
For information on Google Apps for Work encryption and key management, see
the Google Apps for Work encryption whitepaper. That whitepaper covers much
of the same content included here, but focuses solely on Google Apps for Work.
For all Google for Work solutions, we strive to keep customer data protected,
and to be as transparent as possible about how we secure it.

Further information on general Google Apps for Work security is available in
the Google for Work Security and Compliance whitepaper.

Released by Google in August 2016 14

https://cloud.google.com/security/
https://cloud.google.com/security/
https://cloud.google.com/security/compliance
https://www.google.com/work/soc3.html
http://services.google.com/fh/files/helpcenter/google_encryptionwp2016.pdf
https://static.googleusercontent.com/media/www.google.com/en/US/work/apps/business/files/google-apps-security-and-compliance-whitepaper.pdf

	CIO-level summary
	Introduction
	What is encryption?
	Why encryption helps secure customer data
	What we consider customer data
	Google’s default encryption
	Encryption of data at rest
	Layers of encryption
	Encryption at the storage system layer
	Encryption at the storage device layer
	Encryption of backups
	Are there cases where data is not encrypted at rest?
	Key management
	Data encryption keys, key encryption keys, and Google’sKey Management Service
	Encryption key hierarchy and root of trust
	Global availability and replication
	Google’s common cryptographic library
	Granularity of encryption in each Google CloudPlatform product
	Additional encryption optionsfor Cloud customers
	Research and innovation incryptography
	Further references

